Forgetting to use perpendicular height (not slant height).
Forgetting the cross-term \(Rr\).
Using diameter instead of radius.
Exam strategy
Write the formula clearly before substitution.
Always check which radius is larger and which is smaller.
Leave answers in terms of \(\pi\) unless decimals are asked.
Summary
The volume of a frustum is one third of π times the height times the sum of the squares of the two radii plus their product. It’s derived from subtracting one cone’s volume from another.
Worked examples
Show / hide (10) — toggle with E
\( Find the volume of a frustum with R=6 cm, r=4 cm, h=10 cm. \)
\( R^2=36, r^2=16, Rr=24 \)
\( Sum=76 \)
\( V=1/3 π×10×76=760/3 π \)
Answer:
760/3 π cm³
\( Find the volume of a frustum with R=5 cm, r=2 cm, h=12 cm. \)
\( R^2=25, r^2=4, Rr=10 \)
\( Sum=39 \)
\( V=1/3 π×12×39=468π \)
Answer:
468π cm³
\( Frustum with R=7 cm, r=3 cm, h=8 cm. Volume? \)
\( R^2=49, r^2=9, Rr=21 \)
\( Sum=79 \)
\( V=1/3 π×8×79=632/3 π \)
Answer:
632/3 π cm³
\( Find the volume of frustum with R=10 cm, r=6 cm, h=15 cm. \)
\( R^2=100, r^2=36, Rr=60 \)
\( Sum=196 \)
\( V=1/3 π×15×196=980π \)
Answer:
980π cm³
\( Frustum has R=9 cm, r=4 cm, h=20 cm. Volume? \)
\( R^2=81, r^2=16, Rr=36 \)
\( Sum=133 \)
\( V=1/3 π×20×133=2660/3 π \)
Answer:
2660/3 π cm³
\( Frustum with R=12 cm, r=8 cm, h=25 cm. Volume? \)
\( R^2=144, r^2=64, Rr=96 \)
\( Sum=304 \)
\( V=1/3 π×25×304=7600/3 π \)
Answer:
7600/3 π cm³
\( Find volume for R=15 cm, r=5 cm, h=30 cm. \)
\( R^2=225, r^2=25, Rr=75 \)
\( Sum=325 \)
\( V=1/3 π×30×325=3250π \)
Answer:
3250π cm³
\( Frustum with R=4 cm, r=2 cm, h=9 cm. Volume? \)
\( R^2=16, r^2=4, Rr=8 \)
\( Sum=28 \)
\( V=1/3 π×9×28=84π \)
Answer:
84π cm³
\( Find volume when R=2 cm, r=1 cm, h=6 cm. \)
\( R^2=4, r^2=1, Rr=2 \)
\( Sum=7 \)
\( V=1/3 π×6×7=14π \)
Answer:
14π cm³
General form: Frustum with radii R, r and height h. Volume?