Quadratic Formula

\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)
Algebra GCSE

\( Solve x^2+10x+25=0. \)

Tips: use ^ for powers, sqrt() for roots, and type pi for π.
Hint (H)
Perfect square trinomial.

Explanation

Show / hide — toggle with X

Statement

For a quadratic equation \(ax^2+bx+c=0\), the solutions are:

\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

Why it’s true

  • The quadratic formula comes from completing the square on the general quadratic equation.
  • The expression inside the square root, \(b^2-4ac\), is called the discriminant.
  • The discriminant tells us about the type of solutions:
    • \(b^2-4ac>0\): two real solutions.
    • \(b^2-4ac=0\): one real solution (repeated root).
    • \(b^2-4ac<0\): two complex solutions.

Recipe (how to use it)

  1. Identify \(a\), \(b\), \(c\) from the quadratic.
  2. Calculate discriminant: \(D=b^2-4ac\).
  3. Substitute into formula: \((-b \pm \sqrt{D})/(2a)\).
  4. Simplify roots.

Spotting it

Use the quadratic formula when a quadratic cannot be factorised easily, or when asked to find exact solutions.

Common pairings

  • Discriminant analysis.
  • Graphing quadratics (x-intercepts).
  • Completing the square for comparison.

Mini examples

  1. Given: \(x^2+3x+2=0\).
    Answer: \(a=1,b=3,c=2\). \(x=(-3±√(9-8))/2=(-3±1)/2 → -1,-2.\)
  2. Given: \(2x^2-4x-6=0\).
    Answer: \(a=2,b=-4,c=-6\). Discriminant=64. \(x=(4±8)/4→3,-1.\)

Pitfalls

  • Forgetting ± gives only one solution instead of two.
  • Sign errors when substituting \(b\).
  • Square root mistakes with discriminant.

Exam strategy

  • Write down \(a,b,c\) first to avoid mistakes.
  • Always check discriminant to see how many roots to expect.
  • Leave exact answers in surd form if required.

Summary

The quadratic formula gives the exact solutions of any quadratic: \((-b±√(b^2-4ac))/(2a)\).

Worked examples

Show / hide (11) — toggle with E
  1. \( Solve x^2+3x+2=0 using quadratic formula. \)
    1. \( a=1,b=3,c=2 \)
    2. \( D=9-8=1 \)
    3. \( x=(-3±1)/2 \)
    4. \( x=-1,-2 \)
    Answer: -1,-2
  2. \( Solve x^2-5x+6=0. \)
    1. \( a=1,b=-5,c=6 \)
    2. \( D=25-24=1 \)
    3. \( x=(5±1)/2 \)
    4. \( x=2,3 \)
    Answer: 2,3
  3. \( Solve 2x^2-4x-6=0. \)
    1. \( a=2,b=-4,c=-6 \)
    2. \( D=64 \)
    3. \( x=(4±8)/4 \)
    4. \( x=3,-1 \)
    Answer: 3,-1
  4. \( Solve x^2-4x-5=0. \)
    1. \( a=1,b=-4,c=-5 \)
    2. \( D=16+20=36 \)
    3. \( x=(4±6)/2 \)
    4. \( x=5,-1 \)
    Answer: 5,-1
  5. \( Solve x^2+2x+1=0. \)
    1. \( a=1,b=2,c=1 \)
    2. \( D=0 \)
    3. \( x=(-2)/2=-1 \)
    Answer: -1 (repeated root)
  6. \( Solve x^2-2x-8=0. \)
    1. \( a=1,b=-2,c=-8 \)
    2. \( D=36 \)
    3. \( x=(2±6)/2 \)
    4. \( x=4,-2 \)
    Answer: 4,-2
  7. \( Solve 3x^2-12x+9=0. \)
    1. \( a=3,b=-12,c=9 \)
    2. \( D=144-108=36 \)
    3. \( x=(12±6)/6 \)
    4. \( x=3,1 \)
    Answer: 3,1
  8. \( Solve x^2+6x+5=0. \)
    1. \( a=1,b=6,c=5 \)
    2. \( D=36-20=16 \)
    3. \( x=(-6±4)/2 \)
    4. \( x=-1,-5 \)
    Answer: -1,-5
  9. \( Solve 2x^2+3x-2=0. \)
    1. \( a=2,b=3,c=-2 \)
    2. \( D=9+16=25 \)
    3. \( x=(-3±5)/4 \)
    4. \( x=0.5,-2 \)
    Answer: 0.5,-2
  10. \( Solve x^2+4x+8=0. \)
    1. \( a=1,b=4,c=8 \)
    2. \( D=16-32=-16 \)
    3. \( x=(-4±√-16)/2 \)
    4. \( x=-2±2i \)
    Answer: Complex roots: -2±2i
  11. \( Solve x^2 - 3x - 4 = 0 \)
    1. \( a=1,b=-3,c=-4 \)
    2. \( x=(3±√(9+16))/2 \)
    Answer: \( x=4 or x=-1 \)