Pythagoras’ Theorem
\( a^2 + b^2 = c^2 \)
Geometry
GCSE
∑ π √ ≈
\( Right triangle: a=9, b=40. Find c. \)
Explanation
Show / hide — toggle with X
Statement
In a right-angled triangle with shorter sides \(a\), \(b\), and hypotenuse \(c\):
\[
a^2 + b^2 = c^2
\]
Why it’s true
- Squares built on the sides of a right triangle have areas related this way.
- The area of the square on the hypotenuse equals the sum of the areas on the other two sides.
- It is a geometric property unique to right-angled triangles.
Recipe (how to use it)
- Square both shorter sides \(a\) and \(b\).
- Add them together to find \(c^2\).
- Square root the result to get \(c\).
- If solving for a shorter side: rearrange as \(a^2 = c^2 - b^2\).
Spotting it
This formula applies only in right-angled triangles.
Common pairings
- Trigonometry (sine, cosine, tangent).
- Distance formula in coordinate geometry.
- 3D Pythagoras problems (space diagonals).
Mini examples
- Given: \(a=3, b=4\).
Answer: \(c=\sqrt{3^2+4^2}=\sqrt{25}=5\).
- Given: \(c=13, b=5\).
Answer: \(a=\sqrt{13^2-5^2}=\sqrt{169-25}=\sqrt{144}=12\).
Pitfalls
- Forgetting to square root at the end.
- Using the formula in triangles that are not right-angled.
Exam strategy
- Check for a right angle before applying the formula.
- Always square root your final result if solving for a length.
Summary
Pythagoras’ theorem links the sides of a right triangle: \(a^2+b^2=c^2\). It is essential in geometry and distance calculations.
Worked examples
Show / hide (10) — toggle with E
-
\( Find hypotenuse if a=3, b=4. \)
-
\( c^2=3^2+4^2=9+16=25 \)
-
\( c=√25=5 \)
Answer:
5
-
\( Find hypotenuse if a=5, b=12. \)
-
\( c^2=25+144=169 \)
-
\( c=√169=13 \)
Answer:
13
-
\( Find missing side if c=10, b=6. \)
-
\( a^2=100-36=64 \)
-
\( a=√64=8 \)
Answer:
8
-
\( Find missing side if c=25, a=7. \)
-
\( b^2=625-49=576 \)
-
\( b=√576=24 \)
Answer:
24
-
\( Find hypotenuse if a=9, b=12. \)
-
\( c^2=81+144=225 \)
-
\( c=√225=15 \)
Answer:
15
-
\( Find hypotenuse if a=8, b=15. \)
-
\( c^2=64+225=289 \)
-
\( c=√289=17 \)
Answer:
17
-
\( Find missing side if c=29, b=20. \)
-
\( a^2=841-400=441 \)
-
\( a=√441=21 \)
Answer:
21
-
\( Find hypotenuse if a=7, b=24. \)
-
\( c^2=49+576=625 \)
-
\( c=√625=25 \)
Answer:
25
-
\( Find missing side if c=50, b=48. \)
-
\( a^2=2500-2304=196 \)
-
\( a=√196=14 \)
Answer:
14
-
\( Find hypotenuse if a=20, b=21. \)
-
\( c^2=400+441=841 \)
-
\( c=√841=29 \)
Answer:
29