Laws of Indices (Core)

\( a^m a^n = a^{m+n},\quad \frac{a^m}{a^n}=a^{m-n},\quad (a^m)^n=a^{mn},\quad a^{-n}=\frac{1}{a^n},\quad a^0=1 \)
Algebra GCSE

\( \text{Simplify } (4^2)^3 \)

Tips: use ^ for powers, sqrt() for roots, and type pi for π.
Hint (H)
Multiply the powers.

Explanation

Show / hide — toggle with X

Statement

The laws of indices are rules for simplifying expressions involving powers. For any non-zero number \(a\):

\[ a^m a^n = a^{m+n}, \quad \frac{a^m}{a^n} = a^{m-n}, \quad (a^m)^n = a^{mn}, \quad a^{-n} = \frac{1}{a^n}, \quad a^0 = 1 \]

Why they’re true

  • Multiplication law: \(a^m\) means \(a\) multiplied by itself \(m\) times. Combining \(a^m \times a^n\) gives \(a^{m+n}\).
  • Division law: Cancelling common factors leads to \(a^m/a^n = a^{m-n}\).
  • Power of a power: Repeated multiplication gives \((a^m)^n = a^{mn}\).
  • Negative indices: \(a^{-n}\) means the reciprocal, \(1/a^n\).
  • Zero index: Dividing \(a^n\) by itself (\(a^n/a^n\)) gives \(a^0=1\).

Recipe (how to use them)

  1. If multiplying powers with the same base, add exponents.
  2. If dividing powers with the same base, subtract exponents.
  3. If raising a power to another power, multiply exponents.
  4. If the exponent is negative, rewrite as a reciprocal.
  5. If the exponent is zero, the value is 1 (for \(a \neq 0\)).

Spotting it

These laws apply when bases are the same, e.g., simplifying \(2^5 × 2^3\) or \((x^4)^2\).

Common pairings

  • Simplifying algebraic expressions with powers.
  • Standard form calculations.
  • Exponential growth/decay in science and finance.

Mini examples

  1. \(2^3 × 2^4 = 2^{3+4} = 2^7 = 128\).
  2. \(\frac{5^6}{5^2} = 5^{6-2} = 5^4 = 625\).
  3. \((3^2)^3 = 3^{2×3} = 3^6 = 729\).
  4. \(7^{-2} = 1/7^2 = 1/49\).
  5. \(10^0 = 1\).

Pitfalls

  • Bases must be the same: \(2^3 × 3^3 ≠ 6^3\).
  • Do not confuse signs: \(a^{-n} ≠ -a^n\).
  • Zero base caution: \(0^0\) is undefined.

Exam strategy

  • Always check that the base is the same before applying the laws.
  • Write each step clearly when adding, subtracting, or multiplying powers.
  • Convert negative or fractional indices into reciprocals/roots for clarity.

Summary

The laws of indices simplify working with powers: add for multiplication, subtract for division, multiply for powers of powers, flip for negatives, and zero gives 1. These are core rules for handling exponential expressions.

Worked examples

Show / hide (10) — toggle with E
  1. \( Simplify: 2^3 × 2^5 \)
    1. \( Apply multiplication law: 2^(3+5)=2^8. \)
    2. \( 2^8=256. \)
    Answer: 256
  2. \( Simplify: 7^6 ÷ 7^2 \)
    1. \( Apply division law: 7^(6-2)=7^4. \)
    2. \( 7^4=2401. \)
    Answer: 2401
  3. \( Simplify: (3^4)^2 \)
    1. \( Apply power law: 3^(4×2)=3^8. \)
    2. \( 3^8=6561. \)
    Answer: 6561
  4. \( Simplify: 5^-2 \)
    1. \( Apply negative index law: 1/5^2. \)
    2. \( 1/25=0.04. \)
    Answer: 1/25
  5. \( Simplify: 10^0 \)
    1. \( By zero index law: 10^0=1. \)
    Answer: 1
  6. \( Simplify: x^7 ÷ x^4 \)
    1. \( Apply division law: x^(7-4)=x^3. \)
    Answer: \( x^3 \)
  7. \( Simplify: (y^3)^4 \)
    1. \( Power of power: y^(3×4)=y^12. \)
    Answer: \( y^12 \)
  8. \( Simplify: 8^5 ÷ 8^7 \)
    1. \( Apply division law: 8^(5-7)=8^-2. \)
    2. \( Negative index: 1/8^2=1/64. \)
    Answer: 1/64
  9. \( Simplify: (a^2b^3)^2 \)
    1. \( Distribute exponent: a^(2×2)b^(3×2). \)
    2. \( a^4b^6. \)
    Answer: \( a^4b^6 \)
  10. \( Simplify: 4^-3 \)
    1. \( Negative index: 1/4^3. \)
    2. 1/64.
    Answer: 1/64