Binomial Squares

\( (a+b)^2=a^2+2ab+b^2,\qquad (a-b)^2=a^2-2ab+b^2 \)
Algebra GCSE
Question 10 of 20

\( \text{Expand } (2x+5)^2 \)

Tips: use ^ for powers, sqrt() for roots, and type pi for π.
Hint (H)
Expand step by step

Explanation

Show / hide — toggle with X

Statement

The binomial square formulas expand the square of a sum or difference:

\[(a+b)^2 = a^2 + 2ab + b^2 \quad\text{and}\quad (a-b)^2 = a^2 - 2ab + b^2\]

These results are used in algebra to simplify expressions, solve equations, and factorise quadratics.

Why it’s true (short reason)

  • Squaring means multiplying by itself.
  • \((a+b)^2 = (a+b)(a+b)\).
  • Expand using distributive law: \(a^2 + ab + ab + b^2 = a^2 + 2ab + b^2\).
  • Similarly, \((a-b)^2 = (a-b)(a-b) = a^2 - ab - ab + b^2 = a^2 - 2ab + b^2\).

Recipe (how to use it)

  1. Identify whether you have \((a+b)^2\) or \((a-b)^2\).
  2. Square the first term: \(a^2\).
  3. Multiply the two terms and double it: \(±2ab\).
  4. Square the last term: \(b^2\).
  5. Write down the result in simplified form.

Spotting it

You use this formula when you see:

  • A squared bracket, like \((x+3)^2\) or \((2y-5)^2\).
  • A quadratic in the form \(a^2 ± 2ab + b^2\), which can be factorised back into a square.

Common pairings

  • Completing the square (turning quadratics into squared brackets).
  • Factorising perfect square trinomials.
  • Expanding brackets in algebra and simplification tasks.

Mini examples

  1. \((x+4)^2 = x^2 + 8x + 16\).
  2. \((y-7)^2 = y^2 - 14y + 49\).

Pitfalls

  • Forgetting the middle term (thinking \((a+b)^2 = a^2+b^2\)).
  • Getting the sign wrong in \((a-b)^2\).
  • Not squaring the second term correctly (e.g. \((3)^2=9\), not 6).

Exam strategy

  • Write out \((a±b)(a±b)\) if unsure.
  • Check each expansion carefully—three terms should always appear.
  • Remember symmetry: the first and last terms are squares, the middle term is double the product.

Summary

The binomial squares are key identities in algebra. They simplify expansions, support factorisation, and are a stepping stone towards completing the square and quadratic formula applications.

Worked examples

Show / hide (10) — toggle with E
  1. \( Expand (x+3)^2. \)
    1. \( (x+3)^2 = x^2 + 2×x×3 + 3^2 \)
    2. \( = x^2 + 6x + 9 \)
    Answer: \( x^2+6x+9 \)
  2. \( Expand (y-5)^2. \)
    1. \( (y-5)^2 = y^2 - 2×y×5 + 25 \)
    2. \( = y^2 - 10y + 25 \)
    Answer: \( y^2-10y+25 \)
  3. \( Expand (2x+4)^2. \)
    1. \( (2x+4)^2 = (2x)^2 + 2×2x×4 + 16 \)
    2. \( = 4x^2 + 16x + 16 \)
    Answer: \( 4x^2+16x+16 \)
  4. \( Expand (3a-7)^2. \)
    1. \( (3a-7)^2 = (3a)^2 - 2×3a×7 + 49 \)
    2. \( = 9a^2 - 42a + 49 \)
    Answer: \( 9a^2-42a+49 \)
  5. \( Factorise x^2+12x+36. \)
    1. \( Compare with a^2+2ab+b^2 \)
    2. \( x^2+12x+36 = (x+6)^2 \)
    Answer: \( (x+6)^2 \)
  6. \( Expand (p+q)^2. \)
    1. \( (p+q)^2 = p^2 + 2pq + q^2 \)
    Answer: \( p^2+2pq+q^2 \)
  7. \( Expand (x-9)^2. \)
    1. \( (x-9)^2 = x^2 - 18x + 81 \)
    Answer: \( x^2-18x+81 \)
  8. \( Factorise a^2-16a+64. \)
    1. \( Compare with a^2-2ab+b^2 \)
    2. \( a^2-16a+64 = (a-8)^2 \)
    Answer: \( (a-8)^2 \)
  9. \( Expand (5x+2)^2. \)
    1. \( (5x+2)^2 = (5x)^2 + 2×5x×2 + 4 \)
    2. \( = 25x^2 + 20x + 4 \)
    Answer: \( 25x^2+20x+4 \)
  10. \( Expand (4m-3)^2. \)
    1. \( (4m-3)^2 = (4m)^2 - 2×4m×3 + 9 \)
    2. \( = 16m^2 - 24m + 9 \)
    Answer: \( 16m^2-24m+9 \)