-
\( In quadrilateral ABCD, A=92°, B=108°, C=87°. Find D. \)
-
\( Angle sum in a quadrilateral: A + B + C + D = 360°. \)
-
\( So D = 360° − (92° + 108° + 87°) = 360° − 287° = 73°. \)
Answer:
73°
-
\( In a quadrilateral, A=100°, B=70°, C=95°. Find D. \)
-
\( Use A + B + C + D = 360°. \)
-
\( D = 360° − (100° + 70° + 95°) = 95°. \)
Answer:
95°
-
\( In quadrilateral ABCD, A=(2x+10)°, B=(3x−5)°, C=95°, D=85°. Find x. \)
-
\( Sum to 360°: (2x+10) + (3x−5) + 95 + 85 = 360. \)
-
\( 5x + 185 = 360 ⇒ 5x = 175 ⇒ x = 35. \)
Answer:
\( x = 35 \)
-
A right-angled corner in a quadrilateral is 90°, and the other two angles are 128° and 74°. Find the fourth angle.
-
\( Total = 360°. \)
-
\( Fourth angle = 360° − (90° + 128° + 74°) = 68°. \)
Answer:
68°
-
A rectangle is a quadrilateral with all angles equal. What is each angle?
-
\( A + B + C + D = 360° and all four are equal. \)
-
\( Each angle = 360° ÷ 4 = 90°. \)
Answer:
90° each
-
\( In quadrilateral ABCD, A=75°, B=90°, C=130°. Find D. \)
-
\( Use A + B + C + D = 360°. \)
-
\( D = 360° − (75° + 90° + 130°) = 65°. \)
Answer:
65°
-
\( In quadrilateral ABCD, A=(3x+12)°, B=(2x+8)°, C=(4x+30)°, D=(x+10)°. Find x. \)
-
\( Sum to 360°: (3x+12)+(2x+8)+(4x+30)+(x+10)=360. \)
-
\( 10x + 60 = 360 ⇒ x = 30. \)
Answer:
\( x = 30 \)
-
A parallelogram has one interior angle 112°. Find the other three angles.
-
Adjacent angles in a parallelogram are supplementary (sum 180°).
-
So the angle next to 112° is 68°.
-
Opposite angles are equal, so the remaining two are 112° and 68°.
-
\( Check with the quadrilateral sum: 112°+68°+112°+68°=360°. \)
Answer:
Angles: 112°, 68°, 112°, 68°
-
\( Even if ABCD is concave, the interior angles still sum to 360°. If A=40°, B=120°, C=150°, find D. \)
-
Angle sum property holds for any quadrilateral (convex or concave).
-
\( D = 360° − (40° + 120° + 150°) = 50°. \)
Answer:
50°
-
\( In quadrilateral ABCD, A=2x+10°, B=3x°, C=4x°, D=80°. Find x. \)
-
\( Sum to 360°: (2x+10) + 3x + 4x + 80 = 360. \)
-
\( 9x + 90 = 360 ⇒ 9x = 270 ⇒ x = 30. \)
Answer:
\( x = 30 \)