\( Use position vectors for the vertices. Write each midpoint as the average of its endpoints, then form \vec{EF}, \vec{FG}, \vec{GH}, \vec{HE}. \)
Question 18:
[Ad Space]
\begin{aligned}
&\textit{ABCD} \text{ is a quadrilateral. } E,F,G,H \text{ are the midpoints of } AB,BC,CD,DA.\\[2mm]
&\text{Prove, using vectors, that } EFGH \text{ is a parallelogram.}
\end{aligned}
Answer:\( EFGH is a parallelogram. \)
Explanation:
\begin{aligned}
&\text{Let the position vectors of } P,Q,R,S \text{ be } \vec p,\vec q,\vec r,\vec s.\\
&\text{Midpoints: } E=\tfrac{\vec p+\vec q}{2},\; F=\tfrac{\vec q+\vec r}{2},\; G=\tfrac{\vec r+\vec s}{2},\; H=\tfrac{\vec s+\vec p}{2}.\\[2mm]
&\vec{EF}=\vec F-\vec E=\tfrac{\vec q+\vec r-\vec p-\vec q}{2}=\tfrac{\vec r-\vec p}{2}.\\
&\vec{HG}=\vec G-\vec H=\tfrac{\vec r+\vec s-\vec s-\vec p}{2}=\tfrac{\vec r-\vec p}{2}.\\
&\Rightarrow \vec{EF}=\vec{HG}\;\; (\text{equal and parallel}).\\[2mm]
&\vec{FG}=\vec G-\vec F=\tfrac{\vec r+\vec s-\vec q-\vec r}{2}=\tfrac{\vec s-\vec q}{2}.\\
&\vec{EH}=\vec H-\vec E=\tfrac{\vec s+\vec p-\vec p-\vec q}{2}=\tfrac{\vec s-\vec q}{2}.\\
&\Rightarrow \vec{FG}=\vec{EH}\;\; (\text{equal and parallel}).\\[2mm]
&\text{Opposite sides of } EFGH \text{ are equal and parallel }\Rightarrow EFGH \text{ is a parallelogram.}
\end{aligned}